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On the assumptions of incompressibility, and negligible thermal conduction, 
salinity diffusion and viscosity, simple expressions are derived for the conserva- 
tion equations of mass, momentum and energy when internal waves encounter an 
unsteady non-uniform current. These expressions of conservation equations are 
valid for all kinds of internal waves without regard to their different charac- 
teristics. From the dynamical conservation equations, we find that a stress-like 
term, the ‘excess momentum flux tensor’, plays an important role in the inter- 
action between internal waves and an unsteady non-uniform current. Further- 
more, it  is deduced from the energy balance equation that, in the encounter of 
interfacial waves with a steady non-uniform current in a two-liquid system, the 
waves are amplified in an adverse current but suppressed in an advancing current 
as a result of interaction of the waves with the current. This conclusion may 
explain the large amplitudes sometimes observed in internal waves near the 
confluence of currents and near fronts at  the thermocline, the region in the 
ocean where the density gradient is a maximum. 

1. Introduction 
The interaction between internal waves and varying currents is frequently 

encountered in the atmosphere and oceans, particularly in tidewaters near coast- 
lines and in estuaries. For instance, large-amplitude internal waves are sometimes 
detected near the confluence of currents and near fronts at  the thermocline 
(Lafond 1962, pp. 731-57) presumably as a result of this type of interaction. 

Although some general wave studies in inhomogeneous moving media have 
been recently published by Bretherton & Garrett (1968), no work has been done 
specifically on the interaction between internal waves and varying currents. 
However, the effect of a horizontal shearing flow on surface waves was success- 
fully investigated by Longuet-Higgins & Stewart (1961) so that the old mis- 
conception was dispelled that no dynamical coupling between the surface waves 
and varying currents can take place. A more direct derivation of some of their 
results on the amplitude variation of surface waves propagating on a non-uniform 
stream was given later by Whitham (1962) by a different approach. Their results 
have been neatly given in the book by Phillips (1  966). In this present paper the 
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equations for the conservation of mass, momentum and energy for internal waves 
propagating on an unsteady non-uniform current are derived to the second order 
in the wave slope by an integral method. 

As in the case of surface waves, we might anticipate that there is an interchange 
of momentum and energy between internal waves and an unsteady non-uniform 
current in which the velocity varies, i.e. U, = U,(x,,t), where the subscript 
a = 1 ,2  denotes horizontal directions. Though, dynamically, internal waves are 
rather different from surface waves, the basic mechanism of interaction might 
be expected to have features in common with surface waves in their encounter 
with a varying current. In this paper the equations for the conservation of mass, 
momentum and energy in internal wave-trains are derived, and, based on them, 
the interaction between internal waves and an unsteady non-uniform current is 
studied. One particular example is studied in detail, that of an interfacial gravity 
wave propagating in a steady non-uniform current in a two-liquid system. Under 
these circumstances the interaction phenomenon is found analogous to that 
between surface waves and a steady non-uniform current in deep water. 

2. Governing equations and boundary conditions 
We will suppose that in the internal wave motion the variations in density are 

small compared with the average density p ,  that the vertical length scale of the 
motion is small compared with the scale height, the time scale of the motion is 
small compared with 12 h, the Mach number of the flow is very small and the 
Reynolds number of the motion is large. Consequently the sea water can be 
regarded incompressible and inviscid, and in the momentum equation the Coriolis 
force is ignored. 

With rectangular Cartesian co-ordinates the condition of incompressibility, 
the equation of continuity and the Navier-Stokes equation for inviscid fluid are, 
neglecting thermal conduction and salinity mass transfer, 

and 

au, 
- = 0,  
axi 

-+---2 - - 0, aP 4PU.) 
at axi 

au, aui ap 
at 3axi axi p -+p- +-+pgmi = 0, 

where m is a unit vector vertically upwards and g the acceleration of gravity. 
Since internal waves produce only very small vertical displacement at  the free 

surface (see Phillips 1966), the vertical component w of the velocity must vanish 
at  z = 0:  

and the kinematic condition on the bottom z = - d  is 
(4) wo = 0, 

W-d  = 0, (5) 

where wo and wed are the vertical velocities due to internal waves at the surface 
and at  the bottom, respectively. 
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3. The conservation equations of mass, momentum and energy 

be decomposed into the ensemble mean (or current) horizontal velocity 

and the velocity due to internal waves u;(x, t ) .  Similarly, we can represent the 
pressure p = @(x,  t )  +p’(x ,  t )  and the total density p = p(x, t )  +p’(x,  t ) .  The 
ensemble mean velocity Ua = Ua(x,, t ) ,  and U, varies continuously with a length 
scale large compared with a typical wavelength. The mean density p is assumed 
to be a continuous function of z and is slowly varying in xa so that 
ap/az ap/axa. In the following calculations, ensemble averages are taken and 
denoted by brackets ( ). 

In the derivation of the conservation equations, the total velocity u i ( x ,  t )  can 

u a  = u a ( X a ,  t )  

Mass transport 

An equation for the transport of mass can be easily set up from (2).  Substitution 
of u, = U, +u; and p = p+p’ into (2) makes it 

Taking ensemble average of (6), we get 

Subtracting ( 7 )  from (6), we are left with 

which is, of course, the continuity equation for pf. 

depth of the fluid to have 
In order to get the equation for mass transport, we integrate ( 7 )  over the whole 

Using the formula that if D is a differential operator, provided f and Df are 
continuous in the interval of integration, 

(10) 
0 f” Dfdz = D /  -a f d z ,  

-a  

and using the boundary conditions (4) and ( 5 ) ,  equation (9) becomes 

If we let 

and Ma = 1’ -a (p’uA)dz, 

t I f  all functions are continuous in the interval of integration, the operations of in- 
tegrating and averaging are interchangeable. 
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representing the mean mass transports of the mean flow and the wave motion 
respectively, ( 1 1 )  is written as 

which states that the time rate of change of mass per unit area is equal to the 
negative divergence of the total mass flux Ha +Ma. 

Momentum transport 

To derive the equation for the balance of total momentum, we rewrite (3) as 

by means of the continuity equation (2). Then substitute u, = U,+ui and 
p = p +p' into the horizontal component of the momentum equation which is the 
restricted equation (3) with the index i replaced by a = (1 ,2) ,  then integrate 
throughout the depth and average as before to  obtain 

Using the formula (10) and the boundary conditions (4) and (5), equation (16) 
becomes 

correct to the second order 
If we define 

-a 

a8 the 'excess momentum flux' tensor where the Kronecker delta Sea = 1 if 
a: = p, 0 if a: + /?, then (17) becomes 

a -  a a 
at B dx, 
- (in, + Ma) + up aF (@, + x,) + 7 (Sap + U,M,) = 0, 

where g, is interpreted as the mean momentum of the mean flow per unit area, 
while M, is the mean momentum of the wave motion per unit area. The term 
Ua M, can be regarded as ' convective momentum flux '.? 

The balance of total momentum per unit area of the motion is expressed by (1 9). 
The terms in the equation represent respectively the time rate of change of total 
momentum, the flux of total momentum, the gradients of the excess momentum 
flux and convective momentum flux. 

7 This term is suggested by Professor Phillips. 
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The terms U, aMa/axp and a( UaHp)/axp indicate clearly an interchange of 
momentum between the mean flow and the wave motion. 

Energy transport 

Dealing with energy transport, we shall consider it for the mean flow and the 
wave motion separately. I n  order to set up the energy balance equation for the 
mean flow, we multiply the horizontal momentum equation by U,, then integrate 
and average the resulting equation as before to  get 

With the formula (10) and the boundary conditions (4) and ( 5 ) ,  equation (20) 
takes the form 

where 

is the energy of the mean flow per unit area. 
With the definition of (19), equation (21) becomes 

where Xup is the excess momentum flux just defined. Equation (22) is the energy 
budget equation for the mean flow, which states that the time rate of change of 
the kinetic energy of mean flow plus the energy flux of the mean flow is balanced 
by the rate of work done by the mean flow against the negative time rate of 
change and convective rate of change of wave momentum, against the negative 
gradient of the excess momentum flux and the convective momentum flux. 

To formulate the mean energy transport equation for the wave motion, we 
multiply (16) by u.;, the velocity due to wave motion, then integrate and average 
as before to obtain 

correct to the second order. 
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If 7 represents the vertical displacement of fluid elements in the motion, then 

w = a7 -+u,-, a4 
at ax, 

and since p' = r]ap/azt correct to the first order, the last term on the left-hand 
side of (23) can be written 

to the second order 

av av =-+u,- 
at axa 

(24) 

to the second order, where 

is the mean potential energy of internal waves per unit area. 

equation for the wave motion in the form 
With (4)) (5)) (10) and (24), equation (23) provides the mean energy transport 

where 

is the mean total energy of internal waves per unit area, and Sap the excess 
momentum flux. The new quantities D, and N, are defined as the following: 

and (27) 

In  the case of a single wave-train, expression (26) is simply D, = (C,),E, where 
C, is the group velocity of the wave-train. With equation (S), it can be easily 
shown that 

U,N, = UaM ',§ ( 2 8 )  
au 

la,cL 
correct to the second order. 

= E +  UaMa, If we define 

as the convected energy of the internal wave-trains propagating in the mean 
current, then the mean energy transport equation for the wave motion becomes 

This expression is obtained from equation ( 8 )  under the restriction apjax, Q @/&. 
3 The proof of this expression is in appendix A. 
5 This relation is shown in appendix B. 
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The terms in equation (30) are respectively the time rate of change of mean 
convected energy of internal waves, the mean energy flux of internal waves 
convected by the mean current and transmitted by internal wave-trains as well, 
the rate of working by the excess momentum flux against the mean rate of shear 
and the work done by the mean flow against the negative time and convective 
rates of change of wave momentum. 

An equation for the balance of the mean total energy of the fluid system can 
be readily obtained by summing (22) and (30). It is 

This can be derived, of course, from (15) multiplied by total velocity ui under- 
going the same operation of integrating and averaging used before. Note that 
(a/ax,) (UPS,,) is a divergence term. In contrast with this, the interaction term 
in (30), for example, i3,,i3Ua/ax,, is not of the form of a simple divergence; it 
represents a source of energy of the wave motion rather than a spatial re- 
distribution of energy. 

These dynamical conservation equations, derived for internal waves propa- 
gating in an unsteady horizontally non-uniform current, demonstrate clearly 
that the excess momentum flux tensor Sap plays an important role in the inter- 
action between internal waves and an unsteady non-uniform current. Through 
the excess momentum flux tensor (which is closely analogous to the integrated 
Reynolds stress in a turbulent shear flow) internal waves and current exchange 
both momentum and energy. The precise form of Sap depends on the mean 
pressure and the detailed nature of the internal waves, but in the case of a 
single wave-train, when referred to co-ordinate axes perpendicular and parallel 
to the local wave front, it can be shown simply that the non-diagonal components 
vanish. 

4. The interaction between internal gravity waves and a steady non- 
uniform current 

As a result of the interaction between internal waves and an unsteady non- 
uniform current, the amplitude of the waves will change as they propagate 
through a region of varying current. To study the amplitude variation of internal 
waves, we take, as a specific example, the incidence of an interfacial gravity 
wave-train moving in the x-direction on a steady variable current UJx,) in 
a two-liquid system. 

For an interfacial gravity wave propagating in a two-liquid system of densities 
p1 and p2 > pl, the frequency relation (Lamb 1945) relative to a frame moving 
with U is, ignoring the interfacial surface tension, 

where u is the frequency and k the wave-number. In a steady wave-train ad- 

(33) 
in the system, k'J + g = constant = go, 
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where Pz - P1 
g o  = (( P2 +P I  )&ji 

is the wave frequency at a location where U = 0 and relative to a fixed observer 
a t  all positions. With frequency relation (32), equation (33) becomes 

C U 
c,= l+C7 (34) 

where C = a / k  is the phase velocity relative to U .  Equation (34) admits a solution 

_ -  I? -!+yl+T)$ c, 2 2 (35) 

where the positive sign is taken since G = C, when U = 0. It is noted that the 
square root becomes imaginary when - U exceeds iCo; at  this critical point,, 
C = $2, and UjC = H. 

When the convergence of the current is balanced by lateral spreading, the 

(36) 

continuity equation yields au av  
ax ay -+- = 0. 

With the definition of (18) and continuity equation (36), the wave energy equa- 
tion (30) reduces to 

If the variation in density over the depth d is substantial, the dependences of 
the mean flow may require U to be a function of z as well as ofx and y. In the 
Boussinesq approximation, however, in which variations in inertial density are 
neglected, the last term in (37) vanishes; the equation then reduces to the one 
given by Longuet-Higgins & Stewart (1961). 

The complete equation (37) can also be integrated, as an interfacial gravity 
wave, with T = V = gE, 

and 
E M = - .  
C ’  

then, through (36), equation (37) becomes 

(381-1 

The above system of equations (34), (36) and (38) describes the amplitude 
variation of the interfacial gravity wave moving on the steady non-uniform 
current in a two-liquid system. 

In  order to integrate (38), we first establish from (34) a differential relation: 

aU 2U ac 
-- = ax (39) 

t The equation (38) to the Boussinesq approximation can be obtained from Bretherton 
& Garrett’s result. This is shown in appendix C on referees’ suggestion. 
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Multiplying (38) by CP3 e2c/co and using relations (34) and (35), we can write 
the resulting equation, first 

then 

and consequently 

(40) 

(4’)  

where Eo is the wave energy when U = 0. If we denote the amplitude of the 
interfacial gravity wave by a, equation (41) implies 

For U/C b -4, ln(C/Co) can be expanded as 

ln (C/Co) = In (1 + U / C )  

- - ( U P )  + ( ( U/CI3 
( l + U / C )  2(1+U/C)2+3(1+U/C)3+-- ’  

which is definitely less than U/C.  Therefore, relation (32) together with (34) and (35) 
indicates that in an adverse current the waves are amplified and in an advancing 
current the waves are suppressed, the analogous phenomena when surface 
waves propagate on a variable current in deep water. Because of the relatively 
slow phase speeds of internal waves, the effects will become evident for con- 
siderably smaller changes in the current speed. At the critical point when 
U/C = - t ,  a/ao will approach infinity; physically, this might imply the break- 
down of the wave. 

This paper is based upon a part of the author’s dissertation, ‘On internal 
gravity waves ’, submitted to the Johns Hopkins University in conformity with 
the requirements for the degree of Doctor of Philosophy. 

I wish to record my sincere thanks to Prof. Owen M. Phillips for suggesting 
this problem and for instilling many valuable ideas, and to Prof. Stanley 
Corrsin for reading and correcting the manuscripts of the dissertation. This 
research was supported by the National Science Foundation under grant number 
GA-641X. 

Appendix A 
The following is to show the expression of the mean potential energy of internal 

wave-trains propagating in a continuously stratified fluid in terms of the vertical 
displacement of the fluid particles. I f  we let q denote the vertical displacement of 
the fluid particle, the mean potential energy of internal wave-trains propagating 
at  level zo can be expressed by 

49 Fluid Mech. 37 
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and, because p = po  - (ap/az) x to the first order in the neighbourhood of zo, the 
above expression is equal to - gg(ap/az) (7”. Finally, the total mean potential 
energy per unit area of the internal waves V is 

v = - gg lo -a g) (r2) dx. 

Appendix B 
UaNa = U,M au, 

pa,, 
The relation 

is shown correct to the second order as follows: 

From equation (8)) then 

correct to the second order. 

= Ua 2 MI, by the definition of (13).  c 3  
Appendix C 

The derivation of (38) to the Boussinesq approximation from equation (A) 

Their main result on the wave energy E of wave-trains in inhomogeneous 
of Bretherton & Garrett (1968) : 

moving media is written as in their notation, 

which is equivalent to 
dE E do‘ 
dt w‘ dt 
-+(V.c)E---  = 0, 

where dldt = a/at + (U + c )  . V, c is the group velocity and w’ = u in this paper. 
For the special case in 3 4 of this paper, equation (B) becomes 

where scalar c is the phase speed. 
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From (33), we have 

and 

ak au ac 
- ( U + c ) + k  -+- = o  
ax (ax ax) 

aU 2u ac 
- ax = ( I+&.  (39) 

Using equations (C 2) and (39), the last term of (C 1)  on left-hand side is written 
in terms of aU/ax as follows: 

= ~ ( u + ; ) k & + & J + ; ) c ( - & )  ac E (,+a,) au ac kC 

EBU 

Therefore equation (C 1 )  becomes 

c aE Eac EaU u+- -+--+-- = 0 ( 2)ax 2ax 2 ax 

or 

This is equation (38) under the restriction of Boussinesq approximation. 
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